Geometric Series

The geometric is a very important series in mathematics. The series is written as:
$\mathrm{s}={ }_{n=0}^{\infty} \sum a * r^{n} \quad$ or $\quad \mathrm{s}={ }_{n=1}^{\infty} \sum a * r^{(n-1)}$
Here 's' is equal to the sum of the series and can be found by:
$\mathrm{s}=a+a * r+a * r^{2}+a * r^{3}+\ldots .+a * r^{n-1}$
$r * s=a * r+a * r^{2}+a * r^{3}+\ldots .+a * r^{n-1}+a * r^{n}$
$s-r * s=a-a * r^{n}$
$s(1-r)=a\left(1-r^{n}\right) \quad$ and $\quad \lim _{n \rightarrow \infty} r^{n}=0$ if $r<1$
$\mathrm{s}=\frac{a}{1-r} \quad$ when $\mathrm{r}<1$
Now we can write $\frac{a}{1-r}={ }_{n=0}^{\infty} \sum a * r^{n}$ and this series is convergent for all $\mathrm{r}<1$ where 'a' is arbitrary constant.

Power Series

One of the applications of a geometric series is that we can use it to represent functions as a power series. So if we can manipulate a function to get it in the form of $\frac{1}{1-x}$ it can be written as a power series. In general, $\frac{1}{1-x}={ }_{n=0}^{\infty} \sum x^{n}$.

Example:

Seeing how things work always help me to visualize things more so here is an example of how a function can be written as a power series.
$f(x)=\int \frac{d x}{1+x^{3}}$
The first step is to write $\frac{1}{1+x^{3}}$ as a power series:
$\frac{1}{1+x^{3}}=\frac{1}{1-\left(-x^{3}\right)}={ }_{n=0}^{\infty} \sum\left(-x^{3}\right)^{n}={ }_{n=0}^{\infty} \sum(-1)^{n} x^{3 n}$
The last thing we need to do to get $f(x)$ is to integrate the series:
$\mathrm{f}(\mathrm{x})={ }_{n=0}^{\infty} \sum(-1)^{n} \int x^{3 n} \mathrm{dx}={ }_{n=0}^{\infty} \sum(-1)^{n} \frac{x^{3 n+1}}{3 n+1}$

Taylor and Maclaurin Series

A taylor series is similar to a power series, except that the coefficients are variable.
$\mathrm{f}(\mathrm{x})=\mathrm{c}_{0}+\mathrm{c}_{1} * \mathrm{x}+\mathrm{c}_{2} * \mathrm{x}^{2}+\mathrm{c}_{3} * \mathrm{x}^{3}+\ldots$
$\mathrm{f}^{\prime}(x)=\mathrm{c}_{1}+2 * \mathrm{c}_{2} * \mathrm{x}+3 * \mathrm{c}_{3} * \mathrm{x}^{2}+\ldots$
$\mathrm{f}^{\prime \prime}(x)=2 * \mathrm{c}_{2}+6 * \mathrm{c}_{3} * \mathrm{x}+\ldots$
$\mathrm{f}^{\prime \prime \prime}(x)=6 * c_{3}+\ldots$

We can see a pattern developing so now we can find c_{n}, the $n t h$ coefficient:
$\mathrm{f}^{(n)}(x)=n!* \mathrm{c}_{n} \quad$ This can be rearranged to find c_{n}.
$\mathrm{c}_{n}=\frac{f^{(n)}(x)}{n!}$

In general, any function can be written as a taylor series centered at 'a':
$\mathrm{f}(\mathrm{x})={ }_{n=0}^{\infty} \sum \frac{f^{(n)}(x)}{n!}(\mathrm{x}-\mathrm{a})^{n}$
You may be wondering how we got ($\mathrm{x}-\mathrm{a}$) in there and its actually very simple. Remember the rules for translation of functions. A function shifted to the right is $f(x-a)$. If $a=0$, then the function is centered about zero, and this type of series is a Maclaurin series.

An Example:

Just so you can visualize what all this means I'm going to show how you can find the series for e^{x}. After you find a series you need to find the radius of convergence, which I am not going to discuss, but this can be done with the ratio test.
$f(x)=e^{x} \quad$ The function for which we want to find the series is the exponential function.
Let's center the series at 0 so we are finding the Maclauring series.
$\mathrm{f}(0)=1$
$\mathrm{f}^{(n)}(x)=e^{x} \quad$ so the nth derivative of e^{x} is e^{x}. This leads us to the conclusion that $\mathrm{f}^{(n)}(0)=1$.

Common Maclaurin Series:
$\exp (\mathrm{x})={\underset{n=0}{\infty} \sum \frac{x^{n}}{n!}}_{n}$
Converges for all x .
$\sin (x)={ }_{n=0}^{\infty} \sum(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad$ Converges for all x.
$\cos (x)={ }_{n=0}^{\infty} \sum(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad$ Converges for all x.

